DNA单分子测序技术理论特点及应用

PGD图.jpgGenoCare单分子测序采用全内反射(TIRF)显微技术,无需在DNA测序过程中通过扩增DNA模板链放大荧光信号,而直接捕获每个DNA合成所释放的单分子荧光信号。实现了DNA单分子荧光信号捕获,通过捕获4种碱基荧光信号读取DNA序列信息,完成测序。

GenoCare单分子测序仪简化DNA样品前期处理工作,结合快速的测序过程,实现了DNA片段的快速测序。GenoCare同时在不需要PCR扩增而且仅需要ng级别DNA的情况下,灵活准确广泛的应用于DNA测序的科学和临床研究。


DNA链.png


DNA测序特点


染色体1.jpg

基于单分子在测序芯片上直接杂交的方式,以非常简单的测序操作流程实现快速交付,方便科研人员和医疗工作者使用,可以在18小时内出检测结果;

单分子无PCR扩增的测序结果避免PCR引入的非必要错误,使测序结果更可靠;

测序仅需要ng级别的DNA即可实现测序;

独立的荧光信号捕获测序原理同二代测序仪相比,不依赖于周围的荧光信号,因此没有碱基平衡的要求;

测序芯片引物设计灵活,且种类多样,可以满足很多基因测序研究应用。

独特的微流控液路设计,一个测序样本使用一个样本通道,灵活控制测序时间,无需等待,满足快速测序需求。

 


DNA测序方法


DNA单分子常规测序-汉语.png

GenoCare针对不同测序应用,可以通过不同方式实现DNA单分子的直接测序。对有确定的靶向序列测序时,GenoCare可以在测序时,直接杂交捕获目标序列对其进行测序,此方法称为靶向测序;对于没有确定的靶向序列测序时,GenoCare可以通过对DNA分子加上特定的类polyA尾巴实施测序。


常规测序

是DNA片段测序的通用方法,通过在DNA片段上加入polyA尾巴,使其与测序芯片上锚定的PolyT杂交,并实现快速合成测序。


潜在的应用领域

基因重测序,NIPT,PGS。




DNA靶向测序-汉语.png

靶向测序

是通过目标区域跟测序芯片上的定制化引物杂交,实现简单快速测序

潜在应用领域

科研领域有目标区域测序,全外显子测序,临床诊断有肿瘤早筛,肿瘤个性化用药,癌症术后动态监测,易感基因筛查,PGD,新生儿单基因以及遗传病筛查等。






分隔图2.png


参考文献

Timothy D. , Phillip R., Single-Molecule DNA Sequencing of a Viral Genome, SCIENCE, 4 APRIL 2008 VOL 320

Pushpendra K., Single-molecule DNA sequencing technologies for future genomics research, Elsevier Ltd., Volume 26, Issue 11, p602–611, November 2008

Patrice M., Emergence of single-molecule sequencing and potential for molecular diagnostic applications, Expert Rev Mol Diagn. 2009 October ; 9(7): 659–666

Jayson Bowers, Judith Mitchell, Virtual Terminator nucleotides for next generation DNA sequencing, Nat Methods. 2009 August ; 6(8): 593–595.

Alon Goren, Fatih Ozsolak ,Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA, Nat. Methods 7, 47–49 (2010).

Fatih Ozsolak, Philipp Kapranov, Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation, Cell 143, 1018–1029, December 10, 2010

Karl V. Voelkerding, Shale Dames ,Next Generation Sequencing for Clinical Diagnostics-Principles and Application to Targeted Resequencing for Hypertrophic Cardiomyopathy, JMD September 2010, Vol. 12, No. 5

John F. and Kathleen E. ,Single Molecule Sequencing with a HeliScope Genetic Analysis System, Curr Protoc Mol Biol. 2010 October ; CHAPTER: Unit7.10.

William A., Utz J. , Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells, N AT U R E, VO L 4 7 3, 1 9 MAY 2 0 1 1

Kathleen E. Steinmann, Christopher E., Helicos Single-Molecule Sequencing of Bacterial Genomes, High-Throughput Next Generation Sequencing: Methods and Applications,Methods in Molecular Biology, vol. 733

Bryan W., Ryan W., Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation, PNAS, July 26, 2011, vol. 108 ,no. 30, 12467–12472

Eva C Berglund, Anna Kiialainen, Next-generation sequencing technologies and applications for human genetic history and forensics, Investigative Genetics 2011, 2:23

John F Thompson, Patrice M Milos, The properties and applications of single-molecule DNA sequencing, Thompson and Milos Genome Biology 2011, 12:217

Tarang K. , Shraddha Pai, 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary, nature structural & molecular biology, VOLUME 19,,NUMBER 10, OCTOBER 2012

Aurelien G., Julia V., Improving the performance of true single molecule sequencing for ancient DNA, BMC Genomics 2012, 13:177

Philipp Kapranov, Lingxia Chen, Native Molecular State of Adeno-Associated Viral Vectors Revealed by Single-Molecule Sequencing, HUMAN GENE THERAPY 23:46–55 (January 2012)

Jessica M., Sahila B., Single Molecule Sequencing of Free DNA from Maternal Plasma for Noninvasive Trisomy 21 Detection, Clinical Chemistry 58:4 699–706 (2012)

John F. , Jeffrey G., Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations, Genome Research, 22:340–345 ,2012